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INTRODUCTION

The time course of drug in the body is dynamic. A large
number of processes, based on fundamental physicochem-
ical principles, are involved from the initial disintegration of
the tablet and the dissolution of the active ingredient, to the
pharmacological effect of drug. However, irrespective of
the detailed characteristics, the common and most principal
component of the underlying mechanism of numerous drug
processes is diffusion. The diffusion of molecules at the
microscopic level results in the observed “flux” at the
macroscopic level and further to the “ rate” of the process,
which is the crux of the matter for the present commentary.

A PRELUDE IN REGULAR DIFFUSION

Since diffusion is the random migration of molecules or small
particles arising from motion due to thermal energy, the
analysis of the diffusive spreading usually relies on the one-,
two- or three-dimension random walk models (1). For the
purposes of the present work, two striking properties are of
major importance in classical diffusion. The first is that the
root mean square displacement of a walker (particle or
molecule) <z2(t)> is proportional to the square root of time, t:

< z2ðtÞ >/ t ð1Þ

where z is a spatial coordinate. The second property is that
the net flux is proportional to the gradient of the concentra-
tion function (at z and t):

Jðz; tÞ ¼ �D
@Cðz; tÞ

@z
ð2Þ

This is Fick’s first law of diffusion, which states that the
net flux, J(z, t), is proportional to the gradient of the
concentration function, C(z, t), where D is the diffusion
coefficient. The minus sign in Eq. 2 indicates that the flow
occurs from the concentrated to the dilute region of the
solution.

CLASSICAL FIRST-ORDER PROCESSES

Classical biopharmaceutic, pharmacokinetic and pharma-
codynamic processes mostly rely on Eq. 2. For example, the
flux is the flow �qðtÞof the material between two regions (L,
R) of different concentrations CL and CR (CL>CR ) through a
membrane of surface S and thickness δ; the flow �qðtÞ can be
written using Eq. 2 approximating the concentration
gradient by differences:

�qðtÞ ¼ RLR ¼ D 0S
d

½CLðtÞ � CRðtÞ�

¼ P � S½CLðtÞ � CRðtÞ� ð3Þ

where RLR is the transfer rate of the material, D' is a
modified diffusion coefficient, for restricted diffusion inside
the membrane, and the parameter P = D'/δ characterizes
the diffusing ability of a given solute for a given membrane,
and is called permeability with dimensions length × time-1.
Equation 3 reveals the first-order character of the transfer
rate. Under sink conditions (CL>>CR), Eq. 3 can be
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simplified to a zero-order relationship:

�qðtÞ ¼ RLR ¼ D 0A
d

CLðtÞ ¼ P � S � CLðtÞ ð4Þ

All permeation studies dealing with transcellular passive
diffusion are based either on Eq. 3 or 4 to get an estimate
for P. In the same vein, the Noyes-Whitney law in
dissolution studies (2) as well as most of the rate expressions
used in absorption, distribution and excretion of drugs in
pharmacokinetics follow the first-order pattern (1) (Fig. 1).

FROM THE LAW OF MASS ACTION TO FRACTAL
KINETICS

In chemical kinetics, we are interested in the time-depend-
ences of the concentrations of the reactants and products.
However, the rate equations we use in chemical kinetics
presuppose that the reactions are really reaction-limited.
This means that the typical time needed for the reactants to
reach each other in the reaction space (diffusion time, tdiff )
is much shorter than the typical time needed for the two
chemical species to react when placed in close proximity
(reaction time treac). Under these conditions (treac > tdiff), the
rate of the reaction is proportional to the global concen-
trations of the reactant species (law of mass action).
Accordingly, there is an extensive use of the classical rate
equations based on the law of mass action in protein
binding studies, drug-receptor, drug-enzyme, and drug-
carrier interactions in the various fields of drug research (1).

For diffusion-limited reactions (treac < tdiff), the transport
properties of the reactants determine the kinetics. In this
case, the kinetics are largely influenced by local fluctuations
in the concentration of the reactants, since the concept of
global concentrations is meaningless. Most importantly, the
kinetics are sensitive to the peculiarities of the diffusion

process, which may be anomalous if the medium is of low
dimensionality (fractal or disordered). The hallmark of
anomalous diffusion is that the mean square displacement
of particle or molecule follows the pattern

< z2ðtÞ >/ t2=dw ð5Þ
where dw is the fractal dimension of the random walk and
its value is usually dw >2 (1). The exponent dw arises from
the obstacles of the structure, i.e., the diffusional propaga-
tion is hindered by geometric heterogeneity. Equation 5
links the propagation of the diffusion front to the structure
of the medium, and it recovers also the classical law of
regular diffusion when dw=2 (see Eq. 1).

The drastic and unexpected consequences of nonclassical
kinetics of diffusion limited reactions are called fractal
kinetics (3). Due to dimensional or topological constraints,
the position of the reactants is not re-randomized as a
function of time. This results in segregation of the species
while correlations begin to develop between the reactants’
positions, and depletion zones around each reactant steadily
grow with time, which subsequently has a profound effect on
the rate of the reaction. In fact, the rate constant k of the
reaction is no longer “constant,” but depends on the growth
of this depletion zone and, consequently, is time dependent

kðtÞ ¼ kt�h t > t0ð Þ ð6Þ
where k(t) is the instantaneous rate coefficient, since it
depends on time t, and h is the fractal kinetics exponent (0
≤ h<1). The switching time t0 depends on experimental
conditions and indicates that the value of k(t) crosses over
from a constant regime at short times, t < t0, to a power law
decrease at longer times, t > t0, Fig. 1.

This type of kinetics where the rate of the process (reaction) is
governed by a time-dependent coefficient has found many
applications (4). Processes like dissolution and release, which
are based on diffusion principles, have been modeled with this
type of kinetics (5). Moreover, time-dependent coefficients
have been used to explain the pharmacokinetics of calcium (6)
and mibefradil (7–9). The heterogeneous character of the drug
processes in the gastrointestinal lumen (10,11) has also been
analyzed with fractal and fractal kinetics principles (12), and
this has led to the development of the heterogeneous tube
model for the gastrointestinal absorption (13,14). Besides,
fractal concepts coupled with diffusion dispersion principles
have been used for the development of a fully physiological
recirculatory model (15,16), while fractal kinetics have been
applied to the study of elimination processes (17).

FRACTIONAL KINETICS

An alternative way to describe mathematically anomalous
diffusion and diffusion in constrained and fractal topologies
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Fig. 1 Three types of kinetics: simple exponential decline (solid line),
power-law decline (dot-dash), and Mittalg-Leffler kinetics (dashed). Note
that ML converges to the power-law profile for long times.
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is by the use of fractional calculus (18). Fractional calculus
studies derivatives and integrals of fractional order. A
fractional integral is a convolution integral of the integrated
function and a kernel which has the form of a power
function. Fractional derivatives are defined by differentiat-
ing fractional integrals (18).

Differential equations built with fractional derivatives
(FDEs) can describe anomalous kinetics without introducing
time-dependent coefficients as in fractal kinetics. The
presence of the convolution of a function with a power
law of time introduces memory effects essential in the
description of anomalous diffusion. Simple FDEs give rise
to solutions commonly used in pharmaceutical sciences.
The simplest FDE describes a constant fractional rate of
order 0<α<1, i.e.

Da
t AðtÞ ¼ k0 with Að0Þ ¼ 0 ð7Þ

where the operator Da
t stands for the Riemann-Liouville

fractional derivative of order α with respect to t for the
function A(t), and k0 is a constant. Equation 8 gives rise to
the power law of time commonly used in pharmaceutics
(18), i.e.

AðtÞ ¼ k0
Γða þ 1Þ t

a ð8Þ

where Γ is the gamma function. Also, the FDE describing a
proportional fractional rate, i.e.

Da
t AðtÞ ¼ �k1AðtÞ; with Að0Þ ¼A0 ð9Þ

where k1 is a constant, gives rise to the so called Mittag-
Leffler (ML) function of order α denoted as Eα(x), which is a
fractional generalization of the exponential function (18).

AðtÞ ¼ A0Eað�k1t
aÞ ð10Þ

An ML function behaves as a stretched exponential for
small times, but as a power law for large times and, hence,
is capable of describing datasets which have a power law
terminal phase but without blowing up at time zero as the
plain power law does, e.g. in pharmacokinetics (18) (Fig. 1).

It is common when working with fractional calculus to
construct models by “fractionalizing” ordinary, well-estab-
lished models. Although it may be straightforward to
fractionalize simple systems described by one ODE, by
changing the order of the derivative of the ODE, e.g. Eqs. 7
and 9, when working with more complex models described
by systems of ODEs, such as multi-compartmental models
in pharmacokinetics, care needs to be taken so that the final
fractional equations are consistent with each other and the
desired properties, such as mass balance, are maintained
(19). However, it is possible to construct fractional models
of arbitrary structure with mixed fractional orders coexist-
ing (20). Another aspect to consider is the lack of analytical

solutions for the more complex fractional models. This
makes the employment of numerical methods necessary in
order to simulate with these fractional models. Fortunately,
an increasing number of numerical methods for linear (20)
or even non-linear systems (21) have been developed in the
last few years. Also, as fractional calculus and its applica-
tions is a growing field of active research, the relevant
literature is expected to grow both for theory and
methodology, as well as applications. In pharmaceutical
sciences, fractional calculus is considered to be a promising
new tool, and the relevant applications are growing rapidly
(18–20, 22, 23).

Fractal and fractional kinetics are used to model datasets
that depart from the classic exponential kinetics. The
signature of this anomalous kinetics is power-law time
profiles. This type of kinetics has been known even before
the development of the theoretical tools discussed in this
manuscript, and empirically based power functions have
been used to model this type of kinetics in the past (24, 25).

While the classic representations of rate are applicable
under homogeneous conditions where classic diffusion dom-
inates, in heterogeneous confined topologies, fractal concepts
need to be introduced to account for anomalous diffusion and
memory effects. These effectively introduce time-varying
properties for the system. A more elaborate and appealing
way to represent these non-classic rates is by fractional
calculus, where the phenomena of anomalous diffusion are
described naturally, as fractional generalizations of classic
laws, without introducing explicit time dependence.
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